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SUMMARY

In this work, artificial compressibility method is used to solve steady and unsteady flows of viscous
incompressible fluid. The method is based on implicit higher-order upwind discretization of Navier–Stokes
equations. The extension for unsteady simulation is considered by increasing artificial compressibility
parameter or by using dual time stepping. Turbulence models are eddy-viscosity SST model and explicit
algebraic Reynolds stress model. Results for steady turbulent flow over confined backward-facing step,
unsteady laminar flow around circular cylinder and for unsteady turbulent free synthetic jet are presented.
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1. INTRODUCTION

The work deals with numerical solution of 3D incompressible viscous (laminar and turbulent) flows.
Solving viscous incompressible flows modelled by the system of Navier–Stokes (NS) equations
one can find firstly velocity vector (u,v,w)n+1 using numerical solution of momentum equations
with p= pn and then solving corresponding Poisson’s equation for pn+1 using new velocity
(u,v,w)n+1 on the right-hand side of Poisson’s equation. One of these methods authors used in [1].
The methods with pressure Poisson equation for unsteady simulations generally are limited in time
accuracy, especially if they are implicit. On the other hand for application of advanced turbulence
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models that are integrated up to the wall and require refined meshes in the boundary layer, the
implicit discretization is highly useful. The other problem of this approach is the solution of
Poisson’s equation itself. In this work, the authors use structured multi-block non-orthogonal non-
regular grids. For such grids, the convergence of a Poisson solver could deteriorate compared with
orthogonal one block grid. Therefore, it seems practical to consider the approach based on artificial
compressibility both for steady and unsteady simulations. The idea, proposed by Chorin [2], is
to complete continuity equation by a pressure time derivative (1/�2)�p/�t and then, because the
whole inviscid system has the form of the system of compressible Euler equations (non-linear
hyperbolic system), one can use some numerical scheme for compressible flow computation.
With steady boundary conditions and time-dependent method, steady solution may be achieved
for t→∞. In this work, the discretization is implicit using cell-centered finite volume method.
An extension for unsteady simulation is achieved by introducing dual time and using implicit
discretization for both physical and artificial time.

2. MATHEMATICAL MODEL

A convenient time-marching algorithm for NS equations for incompressible flow (density �=const)
can be realized by artificial compressibility method [2]. In its simplest form, only the continuity
equation is modified by the first term in the following equation:

1

�2
�(p/�)

�t
+ �u1

�x1
+ �u2

�x2
+ �u3

�x3
=0 (1)

where � is a positive parameter. The inviscid part of modified NS equations is now strongly
hyperbolic and can be solved by standard methods for hyperbolic conservation laws. The
system including the modified continuity equation and the momentum equations can be
expressed as

�
�W
�t

+Rez(W )=0, �=diag[�−2,1,1,1], W =col[p/�,u1,u2,u3]
(x1, x2, x3)∈D, t ∈(0,∞)

(2)

where W is a vector of unknown kinematic pressure and velocity components, and steady residual
Rez(W ) contains all inviscid and viscous terms. However, the divergence-free velocity field is
not achieved before steady state, �p/�t=0. In unsteady case, the velocity divergence error may
have negligible impact on relevant flow parameters if the �2 is large enough. Other possibility to
obtain unsteady solution is to introduce artificial (dual, iterative) time � and apply the artificial
compressibility method in the artificial time:

�
�W
��

+Rezuns(W )=0, Rezuns(W )= R
�W
�t

+Rez(W ), R=diag[0,1,1,1]
(x1, x2, x3)∈D, t ∈(tn, tn+1), �∈(0,∞)

(3)

where Rezuns(W ) is unsteady residual. The steady state in � should now be achieved at each
physical time level t .
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2.1. Turbulence modelling

In order to simulate turbulent flows, the Reynolds averaging procedure is used. For unsteady
simulation it can be understood as phase averaging since the simulated flows have periodic ‘steady’
state. The Reynolds-averaged equations formally differ from NS equations by additional momentum
transport expressed by Reynolds stress tensor. In this work, the Reynolds stress is modelled using
SST [3] and explicit algebraic Reynolds stress model (EARSM) turbulence model [4, 5]. In the
SST model, the extended eddy-viscosity assumption is used to express the Reynolds stress, while
in EARSM a constitutive relation contains terms up to fourth order in terms of velocity gradient.
Both turbulence models require solving a system of k–� equations for turbulent scales.

3. NUMERICAL METHOD

The stability limitation of an explicit scheme for inviscid part requires �t∼�s/(us+
√
u2s +�2),

where us is flow velocity and �s grid spacing. It becomes more severe as � increases. The choice of
� is problem dependent, there is no general optimum procedure. For robustness, it is recommended
[6] that the � be constant for the whole solution domain, although in general the choice should
depend on local grid and local convergence rate. In the authors experience with constant �, for
orthogonal grids the convergence, e.g. in L2 norm for pressure is as fast as the one for other
unknowns (velocity components) and the steady residual level easily is machine zero even for
highly refined grids. For non-orthogonal grids, the pressure residual settles on higher steady value
than the other residuals. This, however, does not seem to affect the accuracy of velocity field. The
authors choose the � in order of magnitude of maximum flow velocity in the solution domain for
steady simulations.

The time discretization schemes considered here are implicit. This choice has several motivations.
The low-Re turbulence models require refined grid in the boundary layer, which would limit the
time step in an explicit scheme to impractically small value for the viscous stability reason. In
single time method, the choice enables larger values of � for unsteady simulation. For the dual
time method, the implicit discretization removes dependency between the size of physical and
artificial time step.

In ingle time method for steady simulations, the first-order accurate backward Euler scheme
is used

�
Wn+1

i, j,k −Wn
i, j,k

�t
+Rez(W )n+1

i, j,k =0 (4)

In single time method for unsteady simulations, a second-order accurate three-layer scheme is
used instead:

�
3Wn+1

i, j,k −4Wn
i, j,k+Wn−1

i, j,k

2�t
+Rez(W )n+1

i, j,k =0 (5)

For dual time method, the scheme is a combination of the above two—backward Euler method in
artificial time (superscript �) and three-layer scheme for physical time (superscript n)

�
W �+1

i, j,k−W �
i, j,k

��
+R

3W �+1
i, j,k−4Wn

i, j,k+Wn−1
i, j,k

2�t
+Rez(W )�+1

i, j,k =0 (6)
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The steady residuals are computed by a cell-centered finite volume method with quadrilateral or
hexahedral finite volumes in 2D or 3D case, respectively. The discretization of convective terms uses
third-order accurate upwind interpolation. Pressure gradient is computed by central approximation.
The viscous terms are approximated using second-order central scheme, with cell face derivatives
computed on a dual grid of finite volumes constructed over each face of primary grid. The discrete
expression for residual is linearized with respect to unknown vector W in each finite volume from
the stencil, by means of Newton method. The derivatives are computed analytically. Only five (2D)
or seven (3D) finite volumes are retained in the implicit discrete operator. The resulting linear
system is thus five or seven block diagonal. The solution is found by a line relaxation method
with direct method for block tri-diagonal matrix inversion. The two turbulence model equations
are solved decoupled from NS equations and the discretization is same as for the NS equations.
Only the negative part of source terms is linearized and included into the implicit operator. Also in
EARSMmodel, only the linear part of Reynolds stresses is treated implicitly, while the higher-order
terms are taken from previous time level.

4. NUMERICAL RESULTS

4.1. Steady 2D and 3D turbulent backward-facing step flow

The case of confined backward-facing step was measured by Armaly et al. [7]. In the simulation
the width of channel is truncated to 6h, where h is step height. The inlet flow was obtained by
separate simulation of fully developed channel flow on the same grid. The computed secondary
flow in the inlet is shown in Figure 1 in the form of velocity vectors (note that the vectors for
SST model are more magnified). The EARSM model predicts secondary corner vortices, whereas
the eddy-viscosity SST predicts no secondary vortices. We compare recirculation length by 2D
simulation with 3D results in the center plane in the Table I. The velocity profiles in center plane
are shown for both turbulence models in Figure 2.

4.2. Unsteady 2D laminar flow around circular cylinder

In this section, we consider 2D laminar unsteady flow over a circular cylinder placed either in a
channel or in a free space. An example of the multi-block grid is shown in Figure 3.

Figure 1. Inlet secondary flow, EARSM turbulence model.

Table I. Length of separation zone in 2D and 3D cases.

Armaly et al. SST model EARSM model

2D — 8.40h 8.52h
3D 8h 6.70h 8.22h
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Figure 2. Velocity profiles in the mid-plane.

Figure 3. Multi-block grid around a cylinder.

The results of first test case for Reynolds number Re=UD/�=100 and single time method
are shown in Figure 4, in the form of drag and lift coefficients CD, CL. The Strouhal number
of vortex shedding St=Df /U , where f is frequency, is St=0.288, below values indicated by
[8]. The results improve with increasing value of �, however, the �=10U is about the maximum
for a reasonable time step in this case (�t=0.02D/U ). Results of dual time stepping method
using �=U , �t=0.06D/U are shown in Figure 4. The Strouhal number St=0.294. The instan-
taneous flow field for dual time stepping scheme is shown in Figure 5. Next we show results
for second test case achieved by dual time method with �=U,�t=0.06D/U . Figure 6 shows
Strouhal vs Reynolds number in comparison with empirical correlation St=0.266−1.016/

√
Re

[9]. The critical Reynolds number when vortex shedding starts is Re=47.5±0.7 [9]. In our
computation, the flow is steady for Re=30, unsteady but non-periodic for Re=40 and periodic
at Re=47. However, for lower Re the computed shedding frequency is higher than the empir-
ical correlation suggests. The evolution of steady and unsteady residual is shown in Figure 7
(Re=100).

4.3. Turbulent 3D synthetic free jet flow

In this part, we consider the synthetic jet generated by periodical inflow/outflow with zero mean
value in the circular nozzle [10]. The Reynolds number from nozzle diameter and velocity amplitude
Re=UmaxD/�=13325. Turbulence is modelled by the SST eddy-viscosity two-equation model.
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Figure 4. Laminar flow around cylinder, left: single time method with
�=10U and right: dual time method.

Figure 5. Instantaneous laminar flow around cylinder, dual time stepping. Isolines of velocity.
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Figure 6. Reynolds number dependence of Strouhal number.

We used dual time stepping method with �=Umax and �t= 1
72 of forcing period 1/(75Hz).

The computed instantaneous velocity on jet axis is compared with measured [10] phase-averaged
velocity in Figure 8. For larger x/D, the flowfield corresponds to steady free jet. Next, Figure 9
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Figure 7. Convergence history for dual time method.
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Figure 8. Phase-averaged velocity on jet axis, left: computation and right: measurement.
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Figure 9. Time-averaged velocity on the jet axis.

shows time-averaged velocity on jet axis. The computational results achieved using Fluent code
with axisymmetrical formulation in [10] are also shown. The velocity on the axis in Fluent decreases
too fast, which suggests higher spreading rate than in the experiment. The time-averaged velocity
profiles exhibit self-similarity already in the unsteady region. The computational results, Figure 10,
have this feature except for small distance to the nozzle, where an approximate boundary condition
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Figure 10. Time-averaged velocity profiles.

again plays a role. In this figure, the r0.5 denotes the radial distance from jet axis, where the
velocity reaches half of the axial velocity. Velocity profiles moreover agree well with empirical
correlation U/Uax=exp[− ln(2)(r/r0.5)2] according to [11].

5. CONCLUSIONS

In this work, an artificial compressibility implicit upwind finite-volume method has been applied
to steady and unsteady flows of incompressible Newtonian fluid. The unsteady cases included self-
induced and forced unsteadiness. The steady simulation of 2D and 3D turbulent flows over confined
backward-facing step shows that unlike eddy viscosity, the 3D EARSM model gives acceptable
results due to ability to capture secondary flows. In the single time method, the magnitude of
artificial compressibility parameter is limited from above from computational reasons and does
not allow a reliable prediction of unsteady flow. The extension with dual time, on the other hand,
works well for both laminar test cases as well as for simulation of turbulent free synthetic jet.
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